Acta Cryst. (1971). B27, 1360

The Crystal and Molecular Structure of 11,11,12,12-Tetracyano-1,4-naphthaquinodimethane

By Fujiko Iwasaki

Department of Materials Science, The University of Electro-Communications, Chofu-shi, Tokyo, Japan

(Received 27 July 1970)

Crystals of 11,11,12,12-tetracyano-1,4-naphthaquinodimethane, $C_{16}H_6N_4$, are orthorhombic, space group *Pbca* with cell dimensions: $a=13\cdot210$, $b=7\cdot209$, $c=26\cdot629$ Å and Z=8. The structure was determined by a three-dimensional X-ray analysis using visually estimated Cu K α data. Phases were found by the symbolic-addition procedure and the subsequent refinement was carried out by the block-diagonal least-squares method with anisotropic temperature factors, the final *R* value being 0.085 for 1999 observed reflexions. Bond distances are in reasonable agreement with the corresponding values for the related substances, but the bond angles related to dicyanomethylene groups are significantly different because of relieving intramolecular overcrowding. The naphthalene skeleton is folded out by $15\cdot3^{\circ}$ and the quinonoid ring is distorted into the shape of a boat. Non-bonded intramolecular distances $C \cdots C$ (2.966 Å) are close to the typical value of 3.0 Å for non-bonded interactions of this type.

Introduction

11,11,12,12-Tetracyano-1,4-naphthaquinodimethane (TCNNQ) forms charge-transfer complexes with aromatic hydrocarbons, similar to the analogous compounds tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ). TCNNQ acts as a strong acceptor of electrons and its electronegativity is estimated as 1.5 eV (Chatterjee, 1967).

In contrast with TCNE and TCNQ which are planar, TCNNQ is considered subject to molecular deformation as a consequence of the intramolecular overcrowding from the addition of an aromatic ring to TCNQ moiety. The crystal-structure analysis was undertaken to investigate the detailed molecular geometry of TCNNQ itself and provide a standard for a series study on its charge-transfer complexes.

Experimental

The crystals of TCNNQ supplied were obtained from methylene bromide solution as yellow plates. Cell dimensions were calibrated with copper powder lines superposed on Weissenberg photographs (Cu K, $\bar{\alpha}$ = 1.5418, α_1 =1.5405, α_2 =1.5443 and β =1.3922 Å). The crystal data are: C₁₆H₆N₄, M.W. 254.25; orthorhombic, a=13.210±0.003, b=7.209±0.003, c=26.629 ±0.005 Å, V=2535.8 Å³, Z=8; D_m =1.34 g.cm⁻³, D_x =1.332 g.cm⁻³; F(000)=1040; μ =8 cm⁻¹ (Cu K α); systematic absences: k=2n+1 for 0kl, l=2n+1 for h0l, h=2n+1 for hk0; space group: Pbca (No. 61- D_{2h}^{15}).

Intensity data were collected from integrated equiinclination Weissenberg photographs around the *a* and *b* axes, $0kl \sim 9kl$ and $h0l \sim h4l$, using Cu K\alpha radiation. The intensities were estimated visually by comparison with a standard scale. A total of 1999 non-zero reflexions were observed. The crystals used for intensitydata collection were approximately cylindrical in form having an average radius of 0.2 mm. No absorption corrections were made. The usual Lorentz, polarization and spot-shape corrections were applied and interlayer scale factors were refined by a least-squares method.

Structure determination

An approximate scale factor and average temperature factor were obtained by Wilson's method. After an unsuccessful effort to obtain a trial structure through interpretation of the sharpened Patterson function, the structure was solved by the symbolic-addition procedure (Karle & Karle, 1963). Program SIGMA written by Dr T. Ashida was utilized to list the Σ_2 relationships for each reflexion and to calculate the associated probabilities. Signs of 134 reflexions out of 318 with $|E| \ge 1.5$ were determined manually. The naphthalene skeleton and a part of the dicyanomethylene groups were found from an E map based on computations using these phases. The remaining three atoms, C(13), N(1) and N(3), were located by assuming that the molecule was almost planar. Five cycles of block-diagonal least-squares refinement of these atoms with isotropic temperature factors gave an R value of 0.35 for all reflexions but temperature factors of C(13), N(1) and N(3) atoms became enormously large. A three-dimensional Fourier synthesis was calculated and from the resultant map it was found that these three atoms had been misplaced by about 1 Å. The parameters of these atoms were corrected in accordance with the Fourier synthesis. After additional cycles of isotropic least-squares refinement the R value decreased to 0.145. At this stage anisotropic temperature factors were introduced and refinement was continued to reduce the R value to 0.12. Hydrogen atoms were located from a difference Fourier synthesis (Fig. 1) and were included in the least-squares refinement with isotropic temperature factors. The R value was reduced to 0.086 after four cycles of least-squares refinement excluding 24 strong reflexions which needed extinction corrections. They were corrected according to the formula $I_o = I_{corr} \exp(-g I_{corr})$. The constant g was estimated graphically. Four more cycles of blockdiagonal least-squares refinement were carried out with anisotropic temperature factors for carbon and nitrogen atoms and with isotropic temperature factors for hydrogen atoms. The final R value was 0.085 for all the observed reflexions. Atomic scattering factors for carbon and nitrogen were taken from *International Tables for* X-ray crystallography (1962). For hydrogen, the values given by Stewart, Davidson & Simpson (1965) were used. The quantity $\Sigma w(kF_o - F_c)^2$ was minimized where w is the weight function and k is the scale factor. The weighting scheme employed was $w = (30/|F_o|)^2$ if $|F_o| > 30$, w = 1 if $30 \ge |F_o| \ge 8$ and w = 0.2 if $|F_o| < 8$.

Fig. 1. Sections of the three-dimensional difference Fourier synthesis through the atomic centres parallel to (010). Contours are at intervals of $0.1 \text{ e.}\text{Å}^{-3}$, starting with $0.1 \text{ e.}\text{Å}^{-3}$.

Final atomic parameters are listed in Tables 1 and 2. Standard deviations in positional coordinates were: C=0.0035, N=0.004 and H=0.04 Å. A comparison of the observed and calculated structure factors is given in Table 3.

Table	2.	Fractional coordinates $(\times 10^3)$ and the	iermal
		parameters (Å ²) of hydrogen atoms	

	x	у	z	В
H(1)	562 (3)	- 292 (6)	049 (2)	4.3 (1.0)
H(2)	643 (3)	-174 (5)	121 (1)	3.8 (0.9)
H(3)	364 (3)	104 (6)	215 (1)	4.0 (0.9)
H(4)	191 (3)	110 (5)	204 (1)	3.3 (0.9)
H(5)	119 (3)	-012(5)	133 (1)	2.6 (0.7)
H(6)	217 (3)	-133 (6)	063 (1)	3.9 (0.9)

Results and discussion

Thermal motion

Thermal-motion ellipsoids of the individual atoms are shown in Fig. 2. The molecular motion has been analysed in terms of the rigid-body vibrations of translation (T) and libration (ω), using the approach described by Cruickshank (1956a). Some rigid parameters for the 12 innermost atoms [C(1)-C(12)] of the molecule are given in Table 4. The translational motion is not markedly anisotropic, while libration is guite anisotropic and the axis of the greatest libration corresponds approximately to the long axis of the whole molecule. The bond lengths were corrected for the thermal-motion effect indicated by the rigid-body analysis (Cruickshank, 1956a; 1961). A similar analysis was carried out for the entire TCNNQ molecule. This analvsis has been used for correcting the remaining C-C bond lengths. (The differences in bond distances cor-

Table 1. Final atomic parameters of non-hydrogen atoms and their estimated standard deviations (all quantities \times 10⁴)

The anisotropic temperature factors are of the form:

$$\exp\left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)\right]$$

	x	у	Z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	4175 (2)	- 1499 (5)	0592 (1)	30 (2)	95 (6)	10 (0)	-9(3)	-0(1)	0 (2)
C(2)	5191 (3)	-2082(5)	0738 (1)	32 (2)	125 (7)	12 (1)	7 (3)	-1(1)	-2(2)
C(3)	5632 (3)	-1404(5)	1156 (1)	36 (2)	152 (8)	12(1)	9 (3)	-1(1)	-2 (2)
C(4)	5099 (3)	-0074(5)	1468 (1)	39 (2)	127 (7)	9 (0)	-4 (3)	-2(1)	5 (2)
C(5)	3384 (3)	0522 (5)	1832 (1)	44 (2)	150 (8)	9 (0)	-2 (4)	1 (1)	-1 (2)
C(6)	2338 (3)	0480 (5)	1788 (1)	38 (2)	162 (9)	11 (1)	3 (4)	4 (1)	-1 (2)
C(7)	1893 (3)	-0114(5)	1346 (1)	30 (2)	150 (7)	10 (0)	3 (3)	1 (1)	1 (2)
C(8)	2482 (2)	-0725 (5)	0948 (1)	31 (2)	128 (7)	9 (0)	-0(3)	1 (1)	2 (2)
C(9)	3534 (2)	-0697 (5)	0981 (1)	35 (2)	90 (6)	8 (0)	2 (3)	-1(1)	2 (1)
C(10)	3990 (2)	-0034 (5)	1431 (1)	39 (2)	107 (6)	8 (0)	-4 (3)	-0(1)	4 (1)
C(11)	3902 (2)	-1735 (5)	0094 (1)	29 (2)	112 (6)	9 (0)	-6(3)	2 (1)	-3 (2)
C(12)	5665 (3)	1112 (5)	1764 (1)	39 (2)	167 (8)	8 (0)	-8(3)	-2(1)	4 (2)
C(13)	2997 (3)	- 1058 (5)	-0134 (1)	39 (2)	163 (8)	9 (0)	-5(3)	1 (1)	-6 (2)
C(14)	4586 (3)	- 2592 (5)	-0253 (1)	40 (2)	134 (7)	10 (0)	-1(3)	3 (1)	-7 (2)
C(15)	5260 (3)	2657 (6)	2028 (1)	45 (2)	189 (9)	11 (1)	-14 (4)	-6(1)	-9 (2)
C(16)	6740 (3)	0949 (6)	1798 (2)	47 (2)	201 (9)	12 (1)	-14 (4)	-5(1)	2 (2)
N(1)	2295 (2)	-0514 (6)	-0334 (1)	50 (2)	279 (11)	13 (1)	23 (4)	-4(1)	-0 (2)
N(2)	5127 (3)	- 3237 (5)	-0535 (1)	53 (2)	222 (9)	14 (1)	-7(4)	6 (1)	-12 (2)
N(3)	4973 (3)	3945 (6)	2244 (2)	64 (3)	263 (10)	21 (1)	-8(4)	-7(1)	-35 (2)
N(4)	7604 (3)	0832 (7)	1830 (2)	40 (2)	347 (13)	25 (1)	-11(4)	-8(1)	-1(3)

Table 3. Observed and calculated structure factors $(\times 4)$

* indicates reflexions for which w=0.2. † denotes the 24 reflexions corrected for extinction.

L (FO) FC	L IFOI FC	L FO FU	L FOI FC	L FOL FC	L FO FC	L FO] FC	L FOI FC	L [FO] FC
H.K. 0 U	20 83 84	15 44 -34	20 112 108	21 41 -37	41508-585	4 56 49	16 110-111	16+ 31 -33
2 211 216 4 179-228	22 69 74 24 33 31	17 14 -12	25 60 58	23 59 61	61345 403	6 179 172	19 34 26	H,K= 15 2
61594 635 81380-418	26• 16 -9 30 37 43	18 67 -54 19• 22 4	24 79 80 25 42 -41	24 1/ -10	8 120 123	8 91 80	23 85 92	3 33 27
10 161 153 14 142-133	N.K= 8 0 0 176 185	20 67 -63 21 75 -63	26 51 55 27• 19 -21	26• 29 28 27• 19 20	9 86 84 10 79 -/6	9 84 -78 11 97 -98	24 45 -50 25 63 69	4• 13 17 5 36 -33
16 149 133	2 23 -20	22 24 -19	29 42 44 30• 13 -14	28+ 10 -3 H/K= 19 1	12 76 67 13 292-328	12 66 60 13 140-13/	26• 13 15 27• 14 -6	6 33 -33 7• 19 -22
20 62 -60	6 132-124	24 38 32	31 - 20 24	0 61 56	14 140-128	14 83 -7/	28- 16 16	8 47 52
24 191-190	10 23 17	27 61 -60	0.20 18	2 50 40	10 91 -05	16 56 -44	1 38 - 30	11 53 -60
28 101 97	12 40 51	28 53 -51 29• 26 -22	2 .142 138	5 44 -40	16 129-126	16 32 33	3 42 -35	13 13 -17
30 45 -44 32+ 19 -20	16 127-131 18• 26 -22	30• 22 -25 31 61 65	3 137-131 4 113-108	0 08 -03 8 131-134	19= 10 -1/ 21 184 187	19+ 10 -10 21 44 -42	5 111-113	0+ 31 40
34 49 7⊍ Mik≊ 1 U	20 117 120 22 55 55	32 39 -43 33• 31 -37	> 159 158 6 167-173	9 33 36 10 125-117	22 232 247	22 63 53 25• 13 -15	6 113-121 7 37 -35	3• 11 12 7 36 -44
2†343-368 4 89 -82	24• 29 -23 26 33 32	M,K= 2 1 01328-368	7+2522 84637	11 95 91 12 52 46	26 53 ->4 27 48 53	26+ 12 17 29+ 24 -14	8 125 127 9 65 83	H,K≡ 1 3 1 82 76
61458 449	N.K= 9 0	2 168-185	9 36 -29	13 64 57	28 105 112	30+ 25 -20	10 86 82	3 146 140
10 120 115	4. 28 -24	4 234-264	11+ 15 8	16 41 36	30 - 25 -19	32+ 19 26	13 57 -54	5 69 -60
14+ 28 18	8 109 103	0 216-244	13. 30 -28	20 35 -33	33- 18 24	1 70 62	15 95 -92	7 22 -15
18 90 85	12 185-188	9 61 -51	15 46 -36	22 38 36	11511 540	4 35 -23	18 18 -19	9 101 100
22 110-120	14 132-132	10 112-11/	17 63 -67	23 38 -31 24• 18 -17	3 140 155	6 77 -71	20 54 -50	10 150-142
24 152-153 26• 21 13	18• 13 4 20• 22 -16	12 132-131 14• 21 -19	18 74 71 19 48 -38	25+ 17 15 26+ 10 -11	4 143 149 5 123 124	7 109-108 8 79 75	21 66 63	12 92 -84 13 44 -37
28 6u 59 30+ 16 19	220 17 -20	15 .84 70	20 34 34 21+ 19 -16	H+K= 11 1 1 85 -82	6 262 293	9 189-182	25 • 26 28 28 • 20 26	14 68 61 15 51 50
32+ 22 -20	26 31 -32	17 66 -49	22 39 37	2 32 32	8 145 132	12 63 -57	H,K# 10 2	16 64 -57
H,K= 2 U	H,K# 10 0	19 114-110	24. 17 17	4 58 -56	11 184 183	14 61 -58	2. 20 -24	18 141 135
2 40 45	4 91 64	21 69 66	26 47 47	5 104-102 6• 31 -21	12• 18 16 13• 26 19	15 31 -31 16 68 -67	4 43 -44	19* 30 -28 20* 26 -27
4 13+ 132 6†421-421	6 47 42 8 152 146	22• 18 -15 23 79 72	27• 27 24 28• 8 14	7 60 -52 8• 29 -24	14+ 22 27	18+ 25 -2> 19+ 25 -2>	5•23 20 6 49 87	21 132-128
8. 29 19	10 186-197	24 33 35	29 46 -48	9 138 136	16 57 -35	20 52 -5u 21 44 41	7 156 151	23 43 35
12 22/-223	14 288 311	26 75 77	31 23 -27	10 60 -63	21 73 69	22. 28 2/	9, 21 -24	25 40 34
16+ 23 -16	18• 23 25	30- 13 -13	1 80 -73	20+ 10 -14	23- 26 21	24 38 38	11 82 -77	27. 15 -14
20 67 60	22+ 28 -19	334 20 25 H.K. 3 1	3 135 129	21• 10 -9 22• 11 -12	24 83 -/6 25 68 -75	25 34 -33	12 08 -85	28 67 73 29• 19 13
24 28 -23	240 14 -6 H,K= 11 0	1 104 107 2 76 74	4• 19 -16 5 35 18	23• 12 14 24• 27 30	26 53 44 27 55 -55	27• 20 -19 28• 11 14	14 107 102 15 63 -63	30 38 42 31• 19 18
26 61 64 28• 10 -18	4 7 <u>1</u> 78 6 49 46	3 80 80 4•11 -8	6 123 124 7 74 -63	25• 23 25 H,K= 12 1	28 48 45 31• 25 21	30+10 2 H,K= 6 2	16 41 -38 17 43 37	32• 10 11 H.K= 2 3
30+ 25 -34. 32 40 -55	8 107-108 10 63 -62	5 250 277 6 249 273	8+ 31 -22 9 80 74	0 32 -28	32+11 6 H.Km 2 2	0 80 -77 1 110 106	18 69 -72 19 44 43	0 89 -85
N.K. 3 U 2 130 140	12 32 27	7 247-273	10 58 53	3 58 -54	91835-844	2 60 -54	21 44 -46	2. 25 -27
4 180-198	16 85 83	10 206 213	12 91 -84	5 45 -43	2 221-274	4 41 -41	23+ 26 25	5 143-140
8 28/-312	22 36 35	13 39 -20	14 138-138	8 60 -77	4 135-135	6 77 69	25. 17 -16	7 31 -25
12 157 147	H,K= 12 0	16 39 -35	16 93 -90	10 78 -78	5 218 237 6• 23 -19	8 134 138	H,K# 11 2 3 104 100	8 68 60 9 54 -51
10 111 -95	0 154 162 2 97-102	17 119 112 18 120-115	17 105 109 18• 18 ~19	12 43 38 15• 20 -20	71328 363 8 276 313	11 45 -41 13 31 -23	4+ 24 21 5 52 50	10 38 -36 12 135-132
22 139-137 24 38 -40	4 103-106 6 44 -43	19 45 43 20+ 28 20	19 67 65 20 33 29	19 46 46 20• 22 -19	9 61 54 10 158-155	14 37 33 15• 14 0	6 19 -27 7 105 108	13 76 65
26* 19 -16 28 43 -43	8 158-152 10+ 30 -31	21 46 44 22 47 41	21 79 -77 22• 21 21	21. 12 15	11 80 77	16+ 25 23	9 87 84	15 52 -50
32 4u -45 M.K. 4 U	12 38 29	23+ 17 10	23 17 -9	23 17 -10	13 57 -52	18 32 2/	12 73 71	18 66 -60
01574 725	16 40 37	25 69 -67	27 40 -41	2 47 -45	15 91 -84	20- 14 12	15 40 38	20 33 -20
4 183 188	20+ 20 17	27+ 14 -12	30+ 28 -32	4 31 -33	10 77 71	21 80 -81	16 59 -60 17 37 39	21 61 -49 22 54 -47
8 310-348	24 42 -50	29 42 -44	0 57 46	6+ 23 -20	18 68 /2	23 26 -24 24 37 -37	19• 14 16 21• 19 -17	25 60 -61 26 61 62
12 102 -90	2 55 -48	30 37 -35 H,K= 4 1	1 24 -21 2 115 109	8+ 25 -22 10+ 19 -15	20 92 91 23 44 35	25• 19 -14 27• 20 -23	22 42 47 23+ 11 -16	27 26 -22
16 123-11/	4 61 -55 6• 25 23	0 93 -90 1• 11 -11	3 74 -68 4• 22 2	11• 16 20 12 37 -36	25 40 -36 26 64 61	29• 11 -2 30• 18 -20	24 41 49 H,K= 12 2	31• 10 -13 н,кт 3 3
20 6/ -60	8 55 -52 10 73 -66	2• 17 12 3• 15 20	5 47 -43 6 53 -51	15+ 30 -31 18+ 11 10	27• 28 31 28• 20 9	31+ 22 29 H.K= 7 2	0 119 119 2• 28 -30	1 187-192
22 35 -25 28• 12 -2	12• 27 -28 16 36 41	4 174-165 5 41 -41	7 67 -67 8• 24 -24	19. 10 -8 21. 25 -26	29 52 53 30 39 -41	1 125-119	3 69 73	3. 20 -21
P,K= 5 u 2 315 38/	18 32 -31 20• 8 -9	6 153-147 7 36 27	9 149-155 10 88 -82	H-K= 14 1 0 42 42	31. 11 -11	3 36 -2>	6 67 72	5 119-118
4 131-130 6 129 128	H,K= 14 0 0 43 -35	8 132 125 9 149 151	11 76 67 12 86 79	1 42 41	H,K= 3 2	5 48 3/	9 34 32	7 140-139
8 119 111 10 151 154	4+ 16 -19 6 83 -75	10 49 35	13 131 129	3 32 34	2 105-105	7 41 39	13 51 -51	10+ 21 -20
12 229 241	10 39 -43	12 38 35	15 46 -40	6. 17 17	4. 25 -26	10 85 -84	15 55 55	12 129-131
18 43 35	16- 19 -16	15 118 115	17• 16 -10	8 16 -10	6 105-114	12 96 -96	10 20 -20 17 39 -39	13 50 -42 14 87 81
22 49 -41	H,K= 15 0	18 64 50	19 46 38	11 44 45	8 120-115	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18 48 -48 21 50 54	15 56 -48 16 80 -78
26 51 -55	10 38 33	21 55 41 23 69 60	21• 22 -9 22 39 31	12 43 41 15• 20 -10	9 185-194 10 155-159	16 75 -71 17 43 30	22+ 24 21 H+K= 13 2	17• 14 8 18 92 -83
28+ 10 -4 30 34 34	12 36 -27 14 38 38	24+ 28 19 25 65 60	23• 12 14 25 37 40	17+ 25 27	11º 13 -15 12º 20 -27	18 64 -6/	1 35 34	19+ 29 -26
H.K. 6 U 2 173-190	16 80 96 H,K= 16 0	26 50 47 27•17 -2	290 11 -14 H.K# 9 1	H,K= 15 1 1 41 -37	13 107 101	22 52 49	4. 16 14	21 72 -66
4 60 50 6 121-110	0 37 38	29+ 10 -14 30+ 29 -31	1 98 90 2• 30 -28	6+ 23 21	15 65 61	24 55 56	8 38 38	25 22 23
8+ 20 3 10+ 2/ -24	4 49 -47 8 38 4n	31 · 28 28 32 · 19 -20	3 115-118 4 71 A7	10 • 20 -17	17 119 119	26+ 20 -23	10 15 19	27 40 39
12 59 -52	10+ 14 11	H.K= 5 1	> 111 121	12- 19 -16	19 44 44	29. 5 0	13 32 -28	290 17 13 H,Kz 4 3
16+ 3u -21	11416-450	2 160 150	7 155-165	14+ 25 30	21 29 28	300 11 12 H.K= 8 2	10 46 -45 17+ 29 30	0 103 105 1 95 86
24. 29 -21	31319 364	4 78 74	8 121-123 9 72 -70	15 43 51 H•K= 16 1	22+ 25 26 23 38 37	0 86 7/ 1 98 95	18• 10 -7 19• 24 25	2 61 55 3 59 54
30+ 1c -13	47302-438 5 93 85	6 216 226	10 73 73 11 130 130	0• 20 21 1• 14 -18	24 97 101 25 57 -57	2• 21 -19 3• 11 -2	20+ 17 16 H+K# 14 2	4 80 75
2 222 220	61405 468 7 276-307	7 77 -68 8 40 30	12 113-116 13 158-170	2• 27 31 4• 19 17	26 44 47 27• 24 -23	4 46 -42	1 37 36	6 43 42
6 35 20	8 131 122 9 144 135	9•13 0 10 157 160	14 67 -63 15 131-136	5+ 11 10 7+ 31 -32	28+ 15 8	6+ 13 14 7 42 34	4 61 63	8 136 137
8 17 5 12 92 82	10 115 109 11 203-217	11 185-189 13 44 -37	16 49 -46	9 59 -66 H.KT 0 2	31+ 15 -13	9 44 -40	7. 21 -18	10 146 144
14 149 145 16 150 152	12 83 72 13 49 -37	14 48 -37 17 37 34	18 79 77	01449 519	0 17 -3	13 97 99	10 32 36	120 18 -18
18 44 45	14. 30 -1	18 43 37	20 52 44	31>04 587	3 68 -60	15 97 92	13 39 -42 15 47 -5 <u>1</u>	15 34 -34 16 58 -52

rected by the two analyses are less than 0.0015 Å for any bond.) In the second analysis the libration amplitude about the axis of the second moment of inertia is somewhat greater, indicating that the cyano groups are wagging appreciably. The cyano groups can not be regarded as part of a rigid molecule and the C–N distances have been corrected by the method of Busing & Levy (1964), assuming the riding motion.

Molecular structure

Bond lengths and angles with their estimated standard deviations are given in Tables 5 and 6. The details

Table 3 (cont.)

F LEG EC	L FO FC	L FO FU	L F0 FC	L ĮFOJ FC	L F 0 F C	r itor tr	L IFCI FC	L FO) FC
19. 10 -10	2 58 -60	10 158-162	8 59 53	21 58 -72	23. 20 -13	2 81 75	20 20 21	16. 14 -19
21 75 -77	4 132 140	12 126-114	10 55 47	23. 24 -35	25 35 41	4 86 -82	2 24 27	H.K. 8 7
22 59 -58	5 99 96	14 155 155	11 50 53	1 38 -38	28+ 31 -32 28+ 31 -48	8 115 115	4 61 61	1 50 -5~
24+ 24 -21	7. 21 -19	15 165 169	13+ 15 -16	2 56 52	HJK= 4 5	10 204-212	5 15 19	3+ 29 -31
28 32 -30	9 26 29	17 160-172	17 37 - 31	5 42 36	1 73 69	13. 17 10	7 59 -64	6 27 3
26+ 20 20 31+ 22 24	10 134 135	18 233-254	19 55 -58	7. 30 -31	3 20 20 5 42 -65	14 169 179	10 45 -42	H,K= 9 7
H.K= 5 J	12 58 -55	20 46 45	20 30 -33	8. 14 -17	6 61 ->7 7 54 -27	16 106 103	12 53 34	1 26 -27
2 49 40	15 28 -17	24+ 16 -10	22. 19 20	10 43 -42	8 67 -61	18 17 24	H.K. 9 6	5 27 -2/
3 97 -92	16 09 68 18 58 -51	25• 16 18 28 46 51	24 25 -20	11° 27 -29 12 49 49	9 50 44 10 38 -35	19• 17 -20 20 70 73	3 45 46	90 18 21
5 83 -70	19. 27 -25	29 68 -83	27 - 25 - 27	19 50 51	12 82 84	21 41 30	4.28 26	10+ 27 -28
7 100 10U	21 • 28 -26	H.K. 1 4	H,K= 6 4	17• 15 9	18 60 62	25 31 45	12. 17 -19	2 32 -36
8 88 -83 9∙ 3∪ 24	22* 29 27 24	1 153 157 2 155-156	0 100 108 1• 10 18	18 22 28	19 31 -30 20 36 31	H,K3 1 0 2 40 -34	15. 29 -37	4. 19 -18
10+ 21 10	24 39 -44 25a 18 17	4 190 203	2 23 26	21 33 -44 H.K. 12 4	21. 31 - 32	3 52 43 4 55 40	H,K# 1 7	5- 18 -23
14 50 40	26+ 30 34	6 102 98	4 110-109	0 41 -50	23 20 13	5 121-111	2 58 -51	7 31 27
100 1/ 17 17 109-109	0 83 86	8 116-108	5• 20 -25 7• 20 21	1 32 -29 2. 19 9	20 33 -35 27. 29 -34	0 59 -50 8 140-143	3 40 33 4 32 28	9 57 6
18 84 75	1 39 -32	9 95 87	8 46 -41 9 80 76	3. 19 19	Hige 5 5	9 83 81	5 35 -30	10 79 -80
20 27 24	3 84 87	12 51 -45	11 55 51	50 13 11	2 59 -50	11 85 -70	7 62 -59	12 01 -0
21• 22 -2U 22• 23 24	4 6/ 65 5 115 121	13 20 -42	14 20 20 10 10 50 61	0 28 29 7 65 -71	3 55 52	12 50 3/ 14 30 32	10 43 -34 11 72 67	13 29 -30
23 45 43	6 75 76	15 116-110	17 35 -27	8 55 53	5 56 54	15. 29 -24	12. 27 -31	15. 29 -34
26• 1d -7	9. 17 16	17 116-111	22 39 - 39	11 49 48	7 123 122	17 80 -78	15 44 -42	2 40 3
270 13 10 28 40 42	11 58 -62	18 107-105 20 41 41	24• 14 4 27• 13 -16	12° 20 22 13° 25 26	8 70 -48 9+ 31 24	18 79 -81 19 36 38	10 38 -37 18 32 -32	3 45 45 6• 28 1
25 44 52	13 92 -92	21 0 30 21	H.K. 7 4	14 40 37	12 37 35	24+ 19 -18	19 38 -39	8 40 -34
0 79 75	16- 29 -26	26+ 20 24	2. 26 19	17+ 22 -18	15 71 72	H,K= 2 0	H.K. 2 7	11 61 -68
2 41 32	18• 19 -16 19• 14 -16	27 37 -37 28+ 24 -23	3 40 31 4 41 - 39	18• 21 -12 19• 18 -18	16 32 36 18 41 -42	0 140 132 2 57 5/	0 48 49 2 40 -37	12 80 94
3 57 49	H,K= 11 3	29+ 17 23	5 67 60	H,K= 13 4	20 40 -40	4 80 -74	6 39 38 7 43 46	15 34 41
5 157 164	3 64 62	H,K# 2 4	7 46 46	3+ 28 -28	22 38 -41	8. 28 -24	8 43 -47	H.K= 2 1
6 74 -01 7 42 30	4 34 -38 5• 25 -24	0 73 79 1 52 50	8• 17 16 9• 31 32	40 28 33 50 23 -24	25• 29 -33 26• 8 -10	9 51 -52 11 42 -39	11 65 -73 13 57 -57	2. 23 -32
8 5/ 49	6 69 70 7e 28 -21	2 72 67	10 18 15	60 23 18 7 37 -41	H,K# 6 5	12 65 62	14 43 -45	3 23 24
10 - 23 10	8. 31 31	4 32 28	12 37 -34	8. 13 -21	3 46 -44	17 45 4/	18 26 -29	6+ 28 2
12 121-123	9• 20 23 11• 12 24	5 142-135 6 106 109	11 61 59 15 64 67	11 · 20 15 13 · 22 19	4 61 -75 5 40 33	18+ 31 27 20 62 60	20 34 -37 21• 13 17	14 43 -50
13 78 66 14 51 -46	12 90 100 14 47 48	7 198 204	16 57 58 17 49 53	H.K# 14 4 0 62 -73	6 62 -58 9 52 -47	21 36 -38	H.K= 3 7 1 45 -45	16 37 -4
15. 24 -24	15 35 37	10 62 59	18 64 -68	12. 10 38	10 36 -31	23. 29 -20	2. 21 -24	1 50 5
18 67 -67	17• 23 20	12 64 54	21 51 -52	13* 21 27 H.K= 15 4	13 86 91	25+ 22 -21	4 47 45	5 19 2
15 94 100 20 40 42	18 31 29 20• 26 -29	13 88 80 14 84 85	24 49 -01 26• 26 -30	2 49 58 30 21 27	15 26 -27	H-K= 3 6	7 38 -32	6- 19 23
21 3/ 40	21+ 19 -17	15 47 -39	H,KE 8 4	H.K 1 5	17• 30 -28	2 61 -57	9 28 -29	6 18 1
23. 30 -29	H,K= 12 3	17. 20 15	1 28 23	3. 18 13	22 29 37	4 44 -41	13 36 39	10 29 30
25• 22 20 27 51 50	1 42 -33 2 60 -58	18 122-123 19• 26 23	3• 22 20 4 66 -63	4 18 -12 5 32 31	HiKE 7 5	6 52 -4/ 7 55 5/	17 19 23	11- 14 20
28+ 13 -16	4. 21 -22	20 66 61	5 38 - 31	0 68 62	2 62 -51	8+ 31 -32	21 • 22 - 29	13 22 2
H.K. 7 3	6• 14 2	22 68 -71	7 91 -87	8 33 18	4 131-132	16+ 31 -33	1 34 24	154 23 24 H.K. 4 8
2 41 3/	7 20 21 9 47 -42	24 29 -29	8 43 -41 9 38 -34	9 37 -33 10 68 66	5 36 -38 6 61 26	17• 30 28 22 36 -40	2 • 23 -20	1 32 -30
3 90 83	10 30 30	29 55 62	11 32 28	11 94 91	7 61 -53	24 31 -30	8 40 -37	4 33 3
5. 20 -23	13• 26 -20	1 154-158	13 54 53	13 158-162	10+ 25 -31	0 96 -94	13 44 -43	6+ 22 2
8 107 90 8 17 16	16• 21 -20 17• 15 -14	2• 30 -24 3 156-156	15° 25 21 16 35 33	14 58 -49 15 63 -48	11• 25 14 12 59 00	3 53 5u 4 67 -64	14+ 23 -24	8 40 4
9 63 56 10+ 13 12	20+ 25 33 H.K# 13 3	4 73 65	17 61 -56 18e 30 28	16 54 47	13 60 -60	6 46 -41	16 31 -35	10 - 28 3
11 5/ 55	1+ 15 -17	6 176 183	19. 17 -13	18 43 42	15+ 20 -11	9 47 -44	19. 19 -19	1. 10 1
13 49 4/	4 38 -35	9. 22 -8	23 24 25	20 75 70 23• 21 28	16+ 20 21 18+ 19 26	10 62 -62 11+ 30 -32	H,K= 5 7 1 59 60	2 23 2
14 44 -43	6• 30 29 7 53 -57	12° 16 9 16 64 61	24° 19 -16 25° 8 7	24° 24 -28 27 59 -74	19• 30 36 20 33 -35	13 41 -40	4 29 25	7. 28 -3
16 42 -35	8° 17 -15	17 37 26	H,KE 9 4	H.K= 2 5	21 31 34	15+ 20 10	6. 17 -18	9+ 20 -2
18 57 52	12+ 20 -14	19 43 -35	2 118 121	1 58 51	H,K# 8 5	20+ 19 2u	90 23 -23 100 16 -19	10+ 18 2
20 37 -33	15 34 -34	20 4/ 40 21 51 -51	3• 21 19 4• 22 -20	4 85 78 5 37 - 39	0 105-104	21 40 41 25• 12 -12	11• 27 -25	H,K= 6
21 37 -34	16+ 19 18 17+ 18 13	22 42 39	5 89 -89	6 83 79	2 107-110	24. 9 -/	13. 25 19	3+ 11 -1
23+ 20 14	H,K# 14 3	27+ 30 24	7 94 -96	8 66 -67	4 64 -60	6 88 - 93	15 40 45	5. 22 -3
25 51 55	2• 25 -22 3• 8 18	28• 19 -23 29• 17 16	8 41 45 9 43 41	9 40 36 10 53 -45	6 37 34 7•27 25	9 34 30 110 21 -25	17 36 41	6• 11 2 8• 28 3
26 44 -50 28 35 40	4 34 39	30• 22 -3U	10 85 87	12 39 40	9 39 -35	12. 20 -31	H.K. 6 7	9 22 2
H.K. 8 3	6 46 49	0 79 76	12+ 28 27	14 59 55	12 48 44	14+ 17 12	1. 13 -25	4+ 14 -2
1+ 24 24	10 23 23	2 71 71	13• 19 18 14 47 44	16 89 91 17 49 48	15 60 -67 16 41 38	15+ 18 -10 H,K= 6 6	2 65 63	5+ 14 -2
2 64 -58	13• 7 -11 14• 9 -9	3 94 -95	15+ 21 -22	18 24 18	17 19 -16	0 34 -30	5 35 39	7. 19 -2
4 8/ 84	15+ 10 11	6 47 44	17 55 -53	22 39 37	21 32 -32	3 92 90	7 19 -20	4 2¥ 3 ⊨,K= 8
é 111 110	3 35 -38	8 61 -64	20+ 24 -24	23 35 39 27•14 8	22 34 41 23 34 -36	4 43 -42	8 30 30 9 66 -74	0 57 -7
/ 43 38 9 107-106	4• 24 -27 5• 19 -22	9 32 26 10• 25 17	210 17 10 230 28 -27	H,K= 3 5 1 90 -87	H.K. 9 5	10 41 -41	10 10 23	2 31 -4
11 42 -40	6 48 57 78 25 37	11 41 31	24+ 10 10	3 105 96	2 82 -82	14. 23 -21	13 35 38	H.K= 1
13 35 25	8 35 40	18 34 -25	0 44 52	5 31 25	5 33 -33	100 21 -23 170 12 10	14° 15 19 17° 20 -24	3+ 28 3 4+ 17
15 88 -87	9• 10 13 10• 13 18	19•20 21 21•17 21	1 18 23	6•18 0 7•20 -17	6 41 - 37 7 52 - 51	18 - 28 -32	18 13 -16	5 13 1
16 40 3/ 17• 1/ 14	11+ 12 -15	22 64 -62	3 103-105	8 46 -48	8 53 -48	22. 14 1/	1 71 72	00 14 1 H.K= 2
19 8/ 86	0 45 -47	25 35 30	5 79 -84	10 73 64	12 27 -25	230 13 -23 N,K# 7 0	20 26 25 5 44 -45	0 17 1
21+ 11 7	2 37 -20	27° 28 27 28° 17 17	7 67 68 8 34 28	12 74 78 13 83 -84	14 34 34	1 57 -57	6 44 43	3• 14 -2
22+ 20 -24	3 32 -35	29. 10 10	10 40 -40	14 41 35	18 41 -36	5 39 -3/	8 50 52	40 11 -2 H,Kg 3
24. 13 -13	5 105-100	1 75 69	14 32 31	17. 25 20	19 34 33 20 34 38	6 37 -36 80 24 27	90 19 -6 10 32 -35	1. 22 -3
26+ 18 -20	0 110 109 7†440-488	2 40 36 4 81 77	15 62 -64 17• 28 28	18 70 -73	21 • 21 -22	11 47 -44	11 37 39	1- 2
27+ 12 10 H+K= 9 3	8 94 90 9• 31 25	5 75 72	18 43 -40	20 40 38	H.K. 0 6	17. 24 2/	13 - 29 -28	
•	27	- TAO TOO	EU 32 27	220 22 -11	ij 44 ~34	17. 2/ 27	150 27 -28	

of the molecule are shown in Fig. 3. As expected, the intramolecular overcrowding affects the planarity of the molecule. Least-squares planes through various groups of atoms in the structure are presented in Table 7 and the deviations from some of these planes are shown in Fig. 4. The six atoms of the benzenoid ring C(5)-C(10) (plane I) are almost planar. Four atoms C(2), C(3), C(9) and C(10) in the quinonoid ring are almost in one plane II, while C(1), C(4), C(11) and C(12) have significant deviations from this plane. The two $C-C(CN)_2$ groups are entirely on the same side of plane II and this clearly shows that the quinonoid ring is

distorted into the shape of a boat. Planes I and II are folded up by 15.3° (shown diagrammatically in Fig. 4). Plane III through the four atoms, C(2) > C(1) = C(11), and plane IV through C(3) > C(4) = C(12) are tilted from plane II by 16.7° and 21.6°, respectively. The angle between planes III and IV is 38.3°. C(13) = N(1)and C(14) = N(2) lie on the opposite side of plane III by 0.158, 0.304 Å and -0.044, -0.054 Å, respectively. C(15), N(3), C(16) and N(4) lie 0.194, 0.365, -0.067and -0.129 Å away from plane IV. Therefore, the two

$1 \alpha 0 1 c + 1 \alpha c \alpha c 0 c \alpha c$	Table 4.	Rigid-bod	v thermal	parameters
---	----------	-----------	-----------	------------

(a) 12 innermost atoms $C(1) \sim C(12)$

(b) 20 atoms C(1) ~ N(4)

Direction cosines

Principal axes of the molecu	le relative to the crystal axes (a, b, c)	
Moment of inertia (atomic weight Å ²)	Direction cosines	Moment of inertia (atomic weight Å ²)

omic weight Å ²)				(atomic weight Å ²)			
316-0	0.898	-0.228	-0.376	907-5	0.426	0.378	0.822
409.8	<i>−</i> 0·437	-0.360	-0.824	1862.8	-0.902	0.248	0.354
704.6	0.023	-0.905	0.423	2584.7	-0.010	-0.892	0.446

Molecular vibrational tensors

molecul	ai vioratit	mai tensors									
Translat	tion T (×	10 ⁻² Å ²)	σ (T) (× 10 ⁻² .	Ų)	Translat	tion T (\times 1	0−2 Å2)	$\sigma(\mathbf{T})$) (×10 ⁻²	Ų)
(3.00	0·14 3·15	$\begin{pmatrix} -0.08\\ -0.01\\ 2.54 \end{pmatrix}$	(^{0·10}	0·09 0·11	$ \begin{pmatrix} 0.11 \\ 0.12 \\ 0.18 \end{pmatrix} $	(3.22	0·30 2·81	$\begin{array}{c} 0.18 \\ 0.05 \\ 2.15 \end{array}$	(0.16	0·15 0·20	$ \begin{pmatrix} 0.17 \\ 0.20 \\ 0.27 \end{pmatrix} $
Ro	tation ω(c	leg ²)	c	$\sigma(\omega) (deg^2)$)	Rot	tation w(de	eg ²)	σ	(ω) (deg ²	2)
(^{2.6}	0·4 7·8	$\begin{pmatrix} -2.5 \\ -0.6 \\ 2.7 \end{pmatrix}$	$\begin{pmatrix} 1\cdot 3 \end{pmatrix}$	0·8 1·3	$\begin{pmatrix} 0.9\\ 0.9\\ 0.8 \end{pmatrix}$	(6.1	0·6 8·9	$\begin{pmatrix} 0.8\\ 0.5\\ 4.3 \end{pmatrix}$	(1.4	0·5 0·8	$\begin{pmatrix} 0.7\\ 0.6\\ 0.6 \end{pmatrix}$

Principal axes of the T and ω tensors relative to the molecular axes

R.m.s. amplitude	I	Direction cosi	nes	R.m.s. amplitude	Ι	Direction cosi	nes
0·159 Å	0.177	-0.017	0.984	0·145 Å	-0.002	-0.002	0.987
0.171	-0.833	0.530	0.159	0.163	0.443	-0.894	0.071
0.180	0.524	0.848	-0.079	0.185	0.882	0.448	0.146
0·36°	0 710	0.015	0.704	1·99°	-0.346	-0.057	0.937
2-22	0.684	-0 ·2 49	-0.686	2.50	-0.910	0.262	-0.320
2.83	0.165	0.968	-0.187	3.02	0.228	0.963	0.142

Table 5. Bond lengths (Å)

The e.s.d.'s given in parentheses refer to the least significant digits in the bond lengths.

	Uncorrected	Corrected		Uncorrected	Corrected
C(1) - C(2)	1.459 (5)	1.461	C(13) - N(1)	1.140 (5)	1.148
C(2) - C(3)	1.348 (5)	1.348	C(14) - N(2)	1.135 (5)	1.142
C(3) - C(4)	1.452 (5)	1.454	C(15) - N(3)	1.155 (6)	1.165
C(4) - C(10)	1.469 (5)	1.471	C(16) - N(4)	1.148 (5)	1.159
C(5) - C(10)	1.393 (5)	1.394			
C(5) - C(6)	1.387 (5)	1.389	C(2) - H(1)	1 05 (4)	
C(6) - C(7)	1.383 (5)	1.384	C(3) - H(2)	1.09 (4)	
C(7) - C(8)	1.388 (5)	1.389	C(5)H(3)	0.98 (3)	
C(8)C(9)	1.392 (5)	1.394	C(6)—H(4)	0.99 (4)	
C(1)C(9)	1.459 (5)	1.461	C(7) - H(5)	0.93 (4)	
C(9)-C(10)	1.423 (5)	1.424	C(8) - H(6)	1.04 (4)	
C(1) - C(11)	1.383 (5)	1.384			
C(4) - C(12)	1 382 (5)	1.383	$C(13) \cdots C(8)$	2.969 (5)	
C(11)-C(13)	1.427 (5)	1.428	$C(15) \cdots C(5)$	2.963 (5)	
C(11)-C(14)	1.433 (5)	1.434	$C(13) \cdots H(6)$	2.32 (4)	
C(12) - C(15)	1.422 (5)	1.423	$C(15) \cdots H(3)$	2.46 (4)	
C(12)-C(16)	1.428 (5)	1.429			

=C<CN groups are twisted about the C=C axes so that C(13) and C(15) are away from C(8) and C(5), respectively. The angle between planes III and V, C(1)=

,

C(11) < C(13) is 5.0° and that between planes IV and VI, C(4)=C(12) < C(15) is 6.6°. Such distortion of mol-

Table 6. Bond angles (°)

The e.s.d.'s given in pa	arentheses refer to th	e least significant digits in the	bond angles.
C(2) - C(1) - C(9)	117.3 (3)	C(4) - C(12) - C(15)	124.3(3)
C(2) - C(1) - C(11)	117.4 (3)	C(4) - C(12) - C(16)	121.5(3)
C(9) - C(1) - C(11)	125.3 (3)	C(15)-C(12)-C(16)	114.1(3)
C(1) - C(2) - C(3)	120.9 (3)	C(11) - C(13) - N(1)	177.3 (4)
C(2) - C(3) - C(4)	120.2 (3)	C(11)-C(14)-N(2)	178.5 (4)
C(3) - C(4) - C(10)	117.2 (3)	C(12)-C(15)-N(3)	177.0 (4)
C(3) - C(4) - C(12)	118.2 (3)	C(12)-C(16)-N(4)	179.1 (5)
C(10)-C(4)C(12)	124.5 (3)		. ,
C(4) - C(10) - C(5)	121.8 (3)	C(1) - C(2) - H(1)	119 (2)
C(4) - C(10) - C(9)	118.2 (3)	C(3) - C(2) - H(1)	119 (2)
C(5) - C(10) - C(9)	119.9 (3)	C(2) - C(3) - H(2)	116 (2)
C(10)-C(5)C(6)	120.1 (3)	C(4) - C(3) - H(2)	123 (2)
C(5) - C(6) - C(7)	120.1 (3)	C(10)-C(5)H(3)	125 (2)
C(6) - C(7) - C(8)	120.7 (3)	C(6) - C(5) - H(3)	115 (2)
C(7) - C(8) - C(9)	120.4 (3)	C(5) - C(6) - H(4)	120 (2)
C(1) - C(9) - C(8)	121.9 (3)	C(7) - C(6) - H(4)	119 (2)
C(1) - C(9) - C(10)	119.1 (3)	C(6) - C(7) - H(5)	118 (2)
C(8) - C(9) - C(10)	118.8 (3)	C(8) - C(7) - H(5)	121 (2)
C(1) - C(11) - C(13)	125.8 (3)	C(7) - C(8) - H(6)	122 (2)
C(1) - C(11) - C(14)	120.5 (3)	C(9) - C(8) - H(6)	117 (2)
C(13)-C(11)-C(14)	113.6 (3)		

Fig. 2. Perspective drawing of the molecule showing the ellipsoids of thermal motion with a probability of 50 %.

ecules as a result of intramolecular overcrowding is already reported for 10-dicyanomethyleneanthrone (Silverman & Yannoni, 1967), in contrast to 1,4-naphthoquinone and its related substances (Gaultier & Hauw, 1965, 1966, 1969) where no intramolecular overcrowding is found and hence the molecules are almost planar.

The average C-C bond distance in the benzoid ring (1.390 Å) except the fused ring bond, C(9)–C(10), is close to the value found in benzene, 1.392 Å (Cox, Cruickshank & Smith, 1958). The mean value of the C-C single bonds of the quinonoid ring, C(1)-C(2), C(3)-C(4), C(4)-C(10) and C(1)-C(9), is 1.462 Å. The length of C(2)–C(3), 1.348 Å, is compatible with the corresponding bond length of 2,2'-di-(1,4-naphthoquinone), 1.340 Å (Ammon, Sundaralingam & Stewart, 1969) and of TCNQ, 1.347 Å (Long, Sparks & Trueblood, 1965). For bond distances in dicyanomethylene groups, double bonds C(1)-C(11) and C(4)-C(12)(mean value 1.384 Å) are longer than the expected value for an ethylenic double bond (1.34 Å), while single bonds C(11)-C(13), C(11)-C(14), C(12)-C(15)and C(12)–C(16) (mean value 1.428 Å) are shorter than values for a single bond between sp- and sp²-carbon atoms (1.45 Å) (Stoicheff, 1962). The mean value of the C = N bond distances is $1 \cdot 154$ Å. The bond lengths obtained in the TCNQ moiety are in reasonable agreement with the corresponding values found in TCNQ and its complexes (Williams & Wallwork, 1968; Hanson. 1968: Goldstein, Seff & Trueblood, 1968). The bond length, C(9)-C(10), of the fused ring, 1.424 Å,

is close to the corresponding bond length in 10-dicyanomethyleneanthrone (1.43 Å) (Silverman & Yannoni, 1967), naphthalene (1.418 Å) and anthracene (1.428 Å) (Cruickshank, 1957, 1956b).

The bond angles related to dicyanomethylene groups are different from the corresponding values obtained in TCNQ and its related substances. This can be interpreted as relieving intramolecular overcrowding between C(8) and C(13) and between C(5) and C(15). The bond angles, C(2) C(1) C(9), C(3) C(4) C(10) (mean value, 117·3°) and C(13) C(11) C(14), C(15) C(12) C(16) (mean value, 113·9°) are narrower than the corresponding values in TCNQ (118·3 and 116·1°, respectively). The bond angles, C(9) C(1) C(11), C(10) C(4) C(12) (mean value 124·9°) and C(1) C(11), C(10) C(4) C(12) (C(15) (mean value 125·1°) are significantly opened. The non-bonded distances C(8)···C(13), C(5)··· C(15) and H(6)···C(13), H(3)···C(15) are close to the

Fig. 3. Bond lengths (Å) and angles (°).

Table 7. Least-squares planes

Equation of the plane: AX+BY+CZ=D, where X, Y and Z are the coordinates in Å referred to the crystal axes a, b and c. D is the plane-to-origin distance in Å.

		A	В	C	D
I	$[C(5) \sim C(10)]$, benzenoid ring $C(2) = C(3) = C(2)$ and $C(10)$ in	0.0098	0.9325	-0.3610	- 1.3597
11	quinonoid ring	0.2357	0.8477	-0.4753	-0.5780
III	C(2) > C(1) = C(11)	0.3515	0.9109	-0.2163	0.6171
IV	$C(3) \\ C(10) > C(4) = C(12)$	0.0508	0.6650	-0.7451	- 2• 5926
v	$C(1) = C(11) < \frac{C(13)}{C(14)}$	0.4323	0.8786	-0.2029	1.1056
VI	C(4) = C(12) < C(15) C(16)	0.1212	0.5907	-0.7977	- 2.3433

Displacements (Å \times 10³) of atoms from mean planes.*

Boldface deviations indicate the atoms used to define the least-squares plane.

	IV	VI
C(3)	005	192
C(4)	-015	009
C(10)	005	-072
C(12)	005	-024
C(15)	194	008
C(16)	-067	008
N(3)	365	053
N(4)	- 129	028
	C(3) C(4) C(10) C(12) C(15) C(16) N(3) N(4)	$\begin{array}{c c} & IV \\ C(3) & 005 \\ C(4) & -015 \\ C(10) & 005 \\ C(12) & 005 \\ C(15) & 194 \\ C(16) & -067 \\ N(3) & 365 \\ N(4) & -129 \\ \end{array}$

* Displacements of atoms from planes I and II are shown in Fig. 4.

Fig. 4. Deviations (Å \times 10³) from the least-squares planes and projections parallel to these planes, (a) plane I and (b) plane II.

typical values of 3.0 and 2.4 Å, respectively, for nonbonded interaction of this type.

Although the molecule has none of the symmetry elements, the bond lengths and angles of the chemically equivalent bonds agree well with each other. The angle between planes II and III is slightly different from that between planes II and IV, and this is attributed to the difference between the molecular environments of the two dicyanomethylene groups.

Molecular packing

The arrangement of the molecule is shown in Figs. 5 and 6 and intermolecular distances less than 3.6 Å are listed in Table 8. The molecules, I and VII, related by a glide plane perpendicular to the *a* axis stack each other along the *b* axis. The plane of the benzenoid ring makes an angle of 69° with the *b* axis. The shortest C···C contact is 3.377 Å [C(7)···C(9) in VII], which is slightly shorter than the van der Waals contact. All

Fig. 5. Projection of the structure along the b axis.

other contacts are of the van der Waals type. The shortest intermolecular approach, $3 \cdot 183$ Å, occurs between N(3)...C(12) in IV, which is close to the sum of the van der Waals radii.

Table 8. Intermolecular distances less than 3.6 Å

I II III IV	x $\frac{\frac{1}{2} + x}{-\frac{1}{2} + x}$ $1 - x$	y $-\frac{1}{2} - y$ $-\frac{1}{2} - y$ $\frac{1}{2} + y$	$ \begin{array}{c}z\\-z\\-z\\\frac{1}{2}-z\end{array} $	V VI VII VIII	$1 - x$ $1 - x$ $\frac{1}{2} - x$ $\frac{3}{2} - x$	$-y$ $-1-y$ $\frac{1}{2}+y$ $\frac{1}{2}+y$	— z — z z
IV [in	l - x Atom molecule C(2) C(7) C(8) N(3) N(3) N(3) C(1) C(1) C(1) C(1) C(2) C(2) C(2) C(5) C(6) C(7) C(7) C(7) N(3) N(3) N(3) N(3) N(1) N(1)	$\frac{1}{2} + y$ (1)] to	$\frac{1}{2} - z$ atom N(1) N(2) C(4) C(5) C(12) C(15) C(12) C(15) C(14) N(2) N(2) N(2) N(2) N(2) N(2) C(7) C(7) C(8) C(7) C(8) C(9) C(1) C(6) C(7) C(1) C(11) C(11)	VIII in molecc II III IV IV IV VV V V V V V V V V V	$\frac{3}{2} - x$	$\frac{1}{2} + y$ d 3.448 (3.395 (3.383 (3.503 (3.183 (3.183 (3.183 (3.318 (3.491 (3.539 () 3.539 () 3.5421 () 3.542 () 3.520 () 3.527	z 5) 5) 5) 5) 5) 5) 5) 5)
	N(1) N(4)	i i	C(14) C(3)			3·264 (3·553 (5) 6)

All crystallographic computations were performed on the HITAC 5020E computer of the Computer Centre of the University of Tokyo using the Universal Crystallographic Computation Program System 5020 UNICS (Crystallographic Society of Japan, 1967). Fig. 2 was drawn using *ORTEP* (Johnson, 1965).

The authoress expresses her thanks to Professor Ariyuki Aihara and Yasumasa Ihaya of this University for their encouragement. She is indebted to Mr Noboru Suzuki for supplying samples and to Mr Seiich Ueda for experimental assistance. This research was supported in part by a Scientific Research Grant of the Ministry of Education.

Fig. 6. Projection of the structure along the a axis.

References

AMMON, H. L., SUNDARALINGAM, M. & STEWART, J. M. (1969). Acta Cryst. B25, 336.

- BUSING, W. R. & LEVY, H. A. (1964). Acta Cryst. 17, 142.
- CHATTERJEE, S. (1967). J. Chem. Soc. (B), p. 1170.
- Cox, E. G., CRUICKSHANK, D. W. J. & SMITH, J. A. S. (1958). Proc. Roy. Soc. A 247, 1.
- CRUICKSHANK, D. W. J. (1956a). Acta Cryst. 9, 747, 754.
- CRUICKSHANK, D. W. J. (1956b). Acta Cryst. 9, 915.
- CRUICKSHANK, D. W. J. (1957). Acta Cryst. 10, 504.
- CRUICKSHANK, D. W. J. (1961). Acta Cryst. 14, 896.
 Crystallographic Society of Japan (1967). 5020 UNICS, The Universal Crystallographic Computation Program System.
 GAULTIER, J. & HAUW, C. (1965). Acta Cryst. 18, 179.
- GAULTIER, J. & HAUW, C. (1966). Acta Cryst. 20, 620.
- GAULTIER, J. & HAUW, C. (1969). Acta Cryst. B25, 419.
- GOLDSTEIN, P., SEFF, K. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 778.
- HANSON, A. W. (1968). Acta Cryst. B24, 768.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. USAEC Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KARLE, I. L. & KARLE, J. (1963). Acta Cryst. 16, 969.
- LONG, R. E., SPARKS, R. A. & TRUEBLOOD, K. N. (1965). Acta Cryst. 18, 932.
- SILVERMAN, J. & YANNONI, N. F. (1967). J. Chem. Soc. (B), p. 194.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- STOICHEFF, B. P. (1962). Tetrahedron, 17, 135.
- WILLIAMS, R. M. & WALLWORK, S. C. (1968). Acta Cryst. B24, 168.

Acta Cryst. (1971). B27, 1368

The Crystal Structures of Dichlorobis-(2,3-dimethylpyridine)copper(II) and Dibromobis-(2,3-dimethylpyridine)copper(II)

BY WALTER STÄHLIN AND HANS R. OSWALD

Institut für anorganische Chemie, Universität Zürich, Rämistrasse 76, 8001 Zürich, Switzerland

(Received 12 September 1970)

Dichlorobis-(2,3-dimethylpyridine)copper(II) $[=CuL_2Cl_2]$ and dibromobis-(2,3-dimethylpyridine)copper(II) $[=CuL_2Br_2]$ are isotypic with the following monoclinic unit-cell dimensions: CuL_2Cl_2 : a = 7.461 (4), b = 14.80 (1), c = 7.879 (6) Å, $\beta = 110.11$ (5)°; CuL_2Br_2 : a = 7.566 (5), b = 15.33 (2), c = 7.899 (6) Å, $\beta = 109.72$ (6)°. The space group is $P2_1/c$. The structure determination from Patterson and Fourier syntheses was followed by a full-matrix least-squares refinement including anisotropic thermal parameters. For CuL_2Cl_2 the final R value for 961 observed Weissenberg reflexions was 6.8%, whereas for 831 observed Weissenberg reflexions of CuL_2Br_2 a R value of 7.6% was obtained. The structures consist of isolated CuL_2Cl_2 (CuL_2Br_2) units with exactly planar, *trans* square coordination of the copper atom. The Cu-Cl distance is 2.55 Å, the Cu-Br distance is 2.39 Å and the Cu-N distance is 1.98 Å. The fact that there are no further ligands in the neighbourhood of the copper atom which would lead to its common distorted octahedral coordination is attributed to the steric influence of the methyl groups in the α position to the nitrogen atoms.

Introduction

Ludwig & Gasser (1969) reported on the preparation and on spectroscopical investigations on copper(II) complexes of the general formula CuL_2X_2 and CuL_4X_2 where L stands for a unidendate substituted pyridine or piperidine base and X for a halide.

For complexes containing unsubstituted pyridine they found a microsymmetry of D_{2h} with a distorted octahedron consisting of two pyridine, two equatorial